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The uniqueness problem for Chebyshev approximation on compact subsets of
2-space by the family of ratios of constants to first degree polynomials is studied.

Let X be a compact subset of real 2-space. We denote a point x of X by
a real 2-tuple (y, z). Let C(X) be the space of continuous functions on X,
and for g E C(X) define

II g II = sup{1 g(x)j : x EX}.

Let

R(A, x) = peA, x)/Q(A, x) = aO/(al + a2 y + aaz).

Let IE C(X). Then the rational Chebyshev approximation problem is to
find a coefficient vector A * minimizing

e(A) = III - R(A, -)11

under the constraint Q(A, x) > 0 for every x E X. Such a coefficient vector
A* is called best and R(A*, .) is called a best approximation.

It is easily deduced from the results of Brosowski [1, 178-179] and
Mairhuber [4, 230-232] that for any nontrivial rational approximation
problem on two-dimensional X, there exists IE C(X) with a nonunique best
approximation. However, the I of Brosowski is nondifferentiable, so the
uniqueness problem is still open for differentiable! We obtain a uniqueness
result related to one of Collatz [4, 237] for linear approximation.

THEOREM 1. Let X be strictly convex and let I have first partial derivatives
on X. There is at most one best approximation toI on X.
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Proof Suppose Band C are best coefficient vectors, R(B, .) - R(C, .) =1= O.
As the set ot* of best coefficient vectors is convex [I, Lemma 4], we can
assume that B, C are in the interior of ot*. Define

M(B) = {x: If(x) - R(B, x)1 = e(B)}.

By continuity of II - R(B, ')1 and compactness of X, M(B) is nonempty.
By [I, Lemma 7],

R(B, x) = R(C, x), XEM(B). (I)

The first possibility is that bo = 0, in which case (1) implies that Co = 0
and R(B, .) - R(C, .) = O. The second possibility is that bo oF O. Let Xl' x2

be two distinct points of X, then there exist coefficients d1 , d2 , d3 such that

or

Q(D, Xi) = sgn[f(x,) - R(B, xi)]/R(B, X,),

R(B, Xi) Q(D, X,) = sgn[f(Xi) - R(B, X,)],

i = 1,2

i = 1,2.

It follows by the characterization theorem [2, 159] that if M(B) C {Xl' X2},

B is not best. Hence, M(B) contains at least three points. As sgn(R(A, .)) =

sgn(ao) for Q(A,') > 0, we have by (1), sgn(bo) = sgn(co) oF O. Let
a = sgn(bo)' As R(cxA, .) = R(A, .) for ex > 0, we can assume without loss
of generality that R(B, .), R(C, .) are normalized so that bo = Co = a. We
have then

a a
(y, z) E M(R). (2)

Let Xl , X2 , X3 be distinct points of M(B), then the above equation becomes

i = 1,2,3.

If b2 - C2 = °and b3 - C3 = 0, then b1 - C1 = °and B = C. Hence, at
least one of b2 - C2 , b3 - C3 is nonzero.

is the equation of a straight line in 2-space, hence, the points Xl' X2 , X3

fall on a line. As X is strictly convex, one of the three points is in the interior
of X. Assume it is X 2 • It is a maximum or a minimum of1- R(B, .) and by
(I) a maximum or minimum ofl - R(C, -). We have
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Expanding other partial derivatives and knowing that by (2), Q(B, x2) =

Q(C, x 2), we obtain b2 = c2 , ba = Ca' It follows that bi = C1 and B = C.

If X is not strictly convex, we may not have uniqueness.

EXAMPLE. Let X = [0, 1] x [0, 1] and T2* be the second Chebyshev poly
nomial on [0,1]. Let G = 1, H(y, z) = 1/(1 + z), Z = {(O, 0), 0/2, 0)(1, O)},
s(y, z) = T2*(y). There is no rational R(A, -) with Q(A, .) > °such that
sgn(R(A, x) -- G(x» = s(x), x E Z. By the definition of zero-sign compati
bility and the proof of [3, Theorem 2], the function

f(y, z) = 1 + T2*(y)[I/2 - 11 - (1/(1 + z»I]

= 1 + T2*(y)[(I/(1 + z» - (1/2)]

has G and H as best approximations.
Similar arguments can be used to show nonuniqueness for all convex

regions X with a side parallel to an axis.
The arguments used to obtain Theorem 1 can be used to obtain

THEOREM 2. Let X be convex and let f have first partial derivatives on X.
If f has a nonunique best approximation, then there is a best approximation
R(B, -) such that M(B), the error extrema of R(B, '), is contained in a line
segment on the boundary of X.
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